مقایسه کاربرد روش های شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره براساس تحلیل مؤلفه های اصلی برای پیش بینی غلظت میانگین روزانه کربن مونوکسید: بررسی موردی شهر تهران
نویسندگان
چکیده
هدف از این مقاله، پیش بینی میانگین غلظت روزانه کربن مونوکسید در هوای شهر تهران با استفاده از دو مدل شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره برحسب تحلیل مؤلفه اصلی (pca) است. از روش pca برای از بین بردن هم راستایی چندگانه (multicolinearity) بین متغیرهای ورودی و تفسیر بهتر نتایج مدل رگرسیونی استفاده شده است. همچنین با استفاده از شبکه عصبی feed-forward با یک لایه پنهان نیز مدل مناسب برای این امر ایجاد شده است. به منظور پیش بینی غلظت کربن مونوکسید آمار سال های 1383 و 1384 ایستگاه قلهک واقع در شمال تهران مورد استفاده قرار گرفته است. پس از اجرای مدل های پیش گفته، ضریب همبستگی (r)، شاخص میانگین نسبی خطای مطلق (mare) و خطای میانگین مجموع مربعات (rmse) در شبکه عصبی برای مرحله آزمون، به ترتیب برابر با 716/0، 158/0 و 969/0 به دست آمده که در مقایسه با مدل ترکیبی رگرسیونی (581/0= r ، 189/0 mare = و 138/1 rmse =) حاکی از برتری مطلق نتایج شبکة عصبی نسبت به مدل ترکیبی رگرسیونی است.
منابع مشابه
مقایسه کاربرد روشهای شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره براساس تحلیل مؤلفههای اصلی برای پیشبینی غلظت میانگین روزانه کربنمونوکسید: بررسی موردی شهر تهران
هدف از این مقاله، پیشبینی میانگین غلظت روزانه کربنمونوکسید در هوای شهر تهران با استفاده از دو مدل شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره برحسب تحلیل مؤلفه اصلی (PCA) است. از روش PCA برای از بین بردن همراستایی چندگانه (multicolinearity) بین متغیرهای ورودی و تفسیر بهتر نتایج مدل رگرسیونی استفاده شده است. همچنین با استفاده از شبکه عصبی Feed-Forward با یک لایه پنهان نیز مدل مناسب برای این امر...
متن کاملواکاوی کارایی روش های مبتنی بر شبکه های عصبی مصنوعی و رگرسیون خطی چندمتغیره در پیش بینی کشند
پیشبینی تغییرات کشند، بهدلیل اهمیتی که در برنامهریزیهای ناوگان دریایی و نظامی، حمل و نقل و کشتیرانی، طراحی بنادر و سایر مسایل مرتبط با امور دریا دارد؛ از دیرباز مورد توجه بوده است. هدف این مطالعه بررسی عملکرد مدلهای شبکههای عصبی پیشخور با 3 الگوریتم یادگیری کاهش شیب، شیب مزدوج و لونبرگ-مارکوارد در پیشبینی ساعتی تغییرات کشند است. بهعلاوه در تحقیق حاضر، نتایج حاصل از مدل رگرسیون خطی چندم...
متن کاملپیش بینی قیمت روزانه نفت خام برنت با ترکیب روش های آنالیز مؤلفه های اصلی و رگرسیون بردار پشتیبان
پیشبینی روند قیمت نفت خام و نوسانات آن همواره یکی از چالشهای پیش روی معاملهگران در بازارهای نفتی بوده است. این مقاله به پیشبینی قیمت روزانه نفت خام برنت با یک مدل ترکیبی پیشنهادی میپردازد. نمونه آماری قیمت روزانه نفت خام برنت دریای شمال از ژوئیه سال 2008 تا ژوئیه سال 2016 میباشد که از میان کل قیمتهای روزانه نفت در تمام بازارهای نفتی انتخاب شده است. در این پژوهش، برای پیشبینی مدلی از ترک...
متن کاملکاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
پیشبینی بارش یکی از مهمترین مسائل در زمینه مدیریت بهینه منابع آب در بخشهای مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیشبینی بارش زمستانه استان خراسان رضوی با استفاده از شبکههای عصبی مصنوعی میباشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقهای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...
متن کاملپیش بینی عملکرد پسته با استفاده از رگرسیون چندمتغیره ی خطی و شبکه عصبی مصنوعی (مطالعه موردی: شهرستان های رفسنجان و انار استان کرمان)
امروزه، مدیریت اصولی اراضی بهعنوان یک راهکار مهم برای رسیدن به عملکرد بیشتر در واحد سطح و استفاده بهینه از منابع خاک و آب، مورد توجه پژوهشگران، تولیدکنندگان و سیاستگذاران عرصه کشاورزی قرار گرفته است. پژوهش حاضر با هدف بررسی ارتباط بین عملکرد پسته و عوامل مؤثر بر آن، صورت پذیرفت. بدین منظور، 129 قطعه باغ در مناطق مختلف شهرستآنهای رفسنجان و انار شناسایی و انتخاب گردید. نمونهبرداری از آب آبیار...
متن کاملمقایسه کاربرد شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون مؤلفههای اصلی و رگرسیون خطی چندگانه جهت مدلسازی شاخص کیفیت هوای شهری
شاخص کیفیت هوا ابزار کلیدی جهت آگاهی از کیفیت هوا، نحوۀ اثر آلودگی هوا بر سلامت و روشهای محافظتی در برابر آلودگی هوا است. هدف اصلی این تحقیق مدلسازی و برآورد شاخص کیفیت هوا از طریق شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون خطی چندگانه و رگرسیون مؤلفههای اصلی است. جهت محاسبه شاخص کیفیت هوا از دادههای هواشناسی و آلودگی هوای ثبت شده در ایستگاه تجریش و قلهک شهر تهران در دوره زمانی 1385 تا 1390 استف...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
فیزیک زمین و فضاناشر: موسسه ژئوفیزیک دانشگاه تهران
ISSN 8647-1025
دوره 34
شماره 2 2008
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023